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Wave Maps
A brief introduction to wave maps:

Definition: Formally, wave maps are critical points of the
Lagrangian

L(u, ∂u) =

∫

R1+d

ηαβ 〈∂αu, ∂βu〉g dt dx

where u : (R1+d , η) → (M, g). Here, η is the Minkowski
metric on R

1+d and (M, g) is a Riemannian manifold.

Intrinsic Formulation: Critical points of L satisfy the
Euler-Lagrange equation

ηαβDα∂βu = 0

Extrinsic Formulation: If M →֒ R
N is embedded, critical

points are characterized by

�u ⊥ TuM

A. L., W. Schlag., http://www.math.uchicago.edu/~alawrie Scattering for wave maps exterior to a ball

http://www.math.uchicago.edu/~alawrie


The Cauchy problem

Cauchy problem:

Intrinsic Formulation: In local coordinates on (M, g), the
Cauchy problem for wave maps is

�uk = −ηαβΓk
ij(u)∂αui∂βu

j

(u, ∂tu)|t=0 = (u0, u1)

where Γk
ij are the Christoffel symbols on TM.

Extrinsic Formulation: In the embedded case, the Cauchy
problem becomes

�u = ηαβS(u)(∂αu, ∂βu)

(u, ∂tu)|t=0 = (u0, u1)

where S is the second fundamental form of the embedding.
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Energy conservation and scaling

Conservation of energy: Wave maps exhibit a conserved
energy

E (u, ∂tu)(t) =

∫

Rd

(|∂tu|
2
g + |∇u|2g ) dx = const.

Scaling invariance: Wave maps are invariant under the scaling
u(t, x) 7→ u(λt, λx).

Criticality: The scaling invariance implies that the Cauchy
problem is Ḣs × Ḣs−1 critical for s = d

2 , energy critical when
d = 2 and energy supercritical for d > 2.
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Equivariant Wave Maps

Equivariant wave maps: In the presence of symmetries, e.g.,
M = Sd , one can require

u ◦ ρ = ρℓ ◦ u

where ρ ∈ SO(d) acts on R
d (resp. Sd) by rotation. The action

on Sd is rotation is about a fixed axis.
Foundational works:

Shatah (1988): finite time blow-up (self-similar) for wave
maps u : R

1+d → Sd for d ≥ 3.

Christodoulou, Tahvildar-Zadeh (1993): Global theory for
targets satisfying a convexity condition.

Shatah, Tahvildar-Zadeh (1994): Local theory, generalization
of Shatah blow-up to rotationally symmetric, non-convex
targets.
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Exterior Wave Maps

Issue at hand: Global well-posedness and scattering for 3d
equivariant wave maps exterior to a ball.
Exterior model: We consider

u : Rt × (R3 \ B) → S3

with the Dirichlet boundary condition u(∂B) = north pole, and
B = B(0, 1). Fixing equivariance class ℓ = 1 we can write

u : (t, r , ω) 7→ (ψ(t, r), ω) 7→ (sin(ψ(t, r)) · ω , cos(ψ(t, r)))

where (r , ω) are polar coordinates on R
3 and ψ measures the

azimuth angle from the north pole on S3.
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1-equivariant exterior Cauchy problem
Cauchy problem in the exterior setting:

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0 (1)

ψ(t, 1) = 0 ∀t ≥ 0

~ψ(0) := (ψ,ψt)|t=0 = (ψ0, ψ1)

Conserved energy:

E(~ψ) =

∫ ∞

1

[

1

2
(ψ2

t + ψ2
r ) +

sin2 ψ

r2

]

r2 dr
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1-equivariant exterior Cauchy problem
Cauchy problem in the exterior setting:

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0 (1)

ψ(t, 1) = 0 ∀t ≥ 0

~ψ(0) := (ψ,ψt)|t=0 = (ψ0, ψ1)

Conserved energy:

E(~ψ) =

∫ ∞

1

[

1

2
(ψ2

t + ψ2
r ) +

sin2 ψ

r2

]

r2 dr

Finite energy + continuous dependence on a time interval I

=⇒ ψ(t,∞) = nπ for some n ∈ N, for every t ∈ I .
=⇒ every wave map has a fixed topological degree.
The natural space for the solution in the energy class defined
by n = 0 is H := Ḣ1

0 × L2(1,∞) with the norm

‖~ψ‖2
H =

∫ ∞

1
(ψ2

t + ψ2
r ) r2 dr
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Harmonic Maps
Why is the exterior 3d problem interesting? Removing a ball gives
rise to a family of nontrivial harmonic maps Qn indexed by the
topological degree n.
Harmonic maps: A “degree n” harmonic map in this context is a
solution to the following problem:

Qrr +
2

r
Qr =

sin(2Q)

r2
(2)

Q(1) = 0, Q(∞) = nπ

n = 0: In the zero topological class we have Q ≡ 0.

n ≥ 1: After the change of variables t = log(r), x(t) := Q(r),
set y = ẋ and (2) becomes the autonomous system

(

ẋ

ẏ

)

=

(

y

−y + sin(2x)

)

(3)

x(0) = 0, x(∞) = nπ

A. L., W. Schlag., http://www.math.uchicago.edu/~alawrie Scattering for wave maps exterior to a ball

http://www.math.uchicago.edu/~alawrie


3d Harmonic Map phase portrait
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Figure: The red flow line is a depiction of the harmonic map Q1 which
connects the north pole to the south pole, i.e., Q(1) = 0 and Q(∞) = π

This is the equation of a damped pendulum.

3d non-exterior problem there are no harmonic maps...
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2d Harmonic Maps?
2d Harmonic maps equation: In 2d , the exterior harmonic map
equation reduces to the equation of a simple pendulum

ẍ =
1

2
sin(2x), x(0) = 0, x(∞) = nπ
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Figure: The red flow line is a depiction of the harmonic map Q for the
non-exterior problem which connects the north pole to the south pole.
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Harmonic Maps Summary

2d 3d

full Unique harmonic map Q No nontrivial
problem with Q(0) = 0 harmonic maps

(up to scaling)

exterior No nontrivial Family Qn of
problem harmonic maps harmonic maps indexed by

topological degree
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3d exterior model
Back to the 3d exterior model:
Soliton Resolution Conjecture: Informally, this conjecture asserts
that given “generic” initial data for a dispersive equation with
global solutions, the long term behavior of the global evolution
should eventually resolve into a superposition of solitons and a
radiation component that decays.

The 3d exterior wave map problem was proposed by Bizon,
Chmaj, Maliborksi (2011), as a simple model to study
relaxation to the ground states (given by the harmonic maps).

Removing a ball breaks the scaling symmetry!

B-C-M make the simple observation that removing the origin
effectively renders the 3d Cauchy problem subcritical. (3d
equiv. wave maps to the sphere are supercritical in
non-exterior case). Global existence becomes a triviality.

Numerical simulations suggest that in each energy class
defined by the topological class, ψ(∞) = nπ, every solution
scatters to the unique harmonic map Qn in that class.
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Main Results

Theorem 1 (L, Schlag, 2011)

n = 0, Q0 = 0. For any smooth energy data (ψ0, ψ1) ∈ H, there

exists a global smooth evolution ~ψ to (1). Furthermore, ~ψ scatters

to 0 in the sense that the energy of ~ψ on any arbitrary, but

compact region vanishes as t → ∞.

Theorem 2 (L, Schlag, 2011)

n ≥ 1, Qn = Q. There exists ε > 0 such that for all smooth data

(ψ0, ψ1) ∈ Hn such that

‖(ψ0, ψ1) − (Q, 0)‖H < ε

the unique solution ψ to (1) with data (ψ0, ψ1) exists globally in

time and scatters to Q as t → ∞.
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Scattering

Scattering: Here scattering can be phrased as follows: There exists
(ϕ,ϕt) such that

(ψ,ψt) = (Qn, 0) + (ϕ,ϕt) + oH(1) as t → ∞

where ~ϕ solves the linearized equation

ϕtt − ϕrr −
1

r
ϕr +

2

r2
ϕ = 0

ϕ(t, 1) = 0

Cote, Kenig, Merle (2008) prove scattering for 2d wave maps
(non-exterior) for data with energy slightly above E(Q, 0) via
the celebrated Kenig-Merle
concentration-compactness/rigidity method, Kenig, Merle
(2006 Invent.), (2008 Acta.). We also employ the
Kenig-Merle method here.
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Kenig-Merle method

Kenig-Merle method: We outline the proof of Theorem 1. Let

S+ = {(ψ0, ψ1) ∈ H | ~ψ(t) exists globally and scatters as t → +∞}

We claim that S+ = H. This is proved via the following outline:

(Small data result): Small data global existence and
scattering, proving S+ is not empty.

(Concentration Compactness): If Theorem 1 fails, i.e., if
S+ 6= H, then there exists a nonzero energy solution ~ψ to (1)
(called the critical element) such that the trajectory

K+ = {~ψ(t) | t ≥ 0}

is precompact in H.

(Rigidity Argument): If a global evolution ~ψ has the property
that the trajectory, K+, is pre-compact in H, then ψ ≡ 0.
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Small Data Scattering
Small data scattering: The small data global existence and
scattering result follows from the Smith-Sogge Strichartz estimates
for 5d linear exterior wave equations (2000 CPDE) after the
following reduction: Set u := ψ

r
. Then u satisfies the following

equation:

utt − urr −
2

r
ur +

sin(2ru) − 2ru

r3
= 0 (4)

u(1, t) = 0

By Hardy’s inequality the map ψ 7→ ψ
r

defines an isomorphism

between H and Ḣ1
0 × L2(R5 \ B), hence a small data global

existence and scattering result for (4) implies the same result
for (1) in H.

As usual, one can show that a solution u scatters to a free
wave ⇐⇒ ‖u‖S <∞ where S is a suitably chosen Strichartz
norm. In this case, S = L3

t L
6
x .
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Concentration Compactness

Concentration Compactness:

small data theory =⇒ S+ contains a small ball around zero.
Hence, if Theorem 1 fails, there is a bounded sequence of
data ~un := (u0

n, u
1
n) ∈ H such that

‖~un‖H → E∗ > 0, and ‖un‖S → ∞

One assumes that E∗ is minimal with this property.

Naively, we would like to “pass to the limit” in the un and
obtain an element u∗ with ‖~u∗‖H = E∗ and ‖u∗‖S = ∞.

However, the symmetries of the equation present an obstacle
to compactness. Namely,

1 the un can be arbitrarily translated in time.
2 the un might split into individual waves which become

arbitrarily separated in space-time as n → ∞.
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Concentration Compactness (continued)
Bahouri-Gerard Decomposition

{un} a seq. of free radial waves bounded in H = Ḣ1
0 × L2(R5

∗).
Passing to a subsequence, ∃ a seq. of free solutions v j bounded in

H, and seq.’s of times t
j
n ∈ R such that for γk

n defined by

un(t) =
∑

1≤j<k

v j(t + t j
n) + γk

n (t) (5)

we have for any j < k, ~γk
n (−t

j
n) ⇀ 0 weakly in H as n → ∞,

limn→∞ |t j
n − tk

n | = ∞ and the errors γk
n vanish asymptotically

lim
k→∞

lim sup
n→∞

‖γk
n‖(L∞

t L
p
x∩L3

t L
6
x )(R×R5

∗
) = 0 ∀

10

3
< p <∞ (6)

Moreover, we have orthogonality of the free energy

‖~un‖
2
H =

∑

1≤j<k

‖~v j‖2
H + ‖~γk

n‖
2
H + o(1) as n → ∞ (7)
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Concentration Compactness (continued)

t=0

t=t

t=tn2

n1

Figure: a schematic description of the concentration-compactness
decomposition

A. L., W. Schlag., http://www.math.uchicago.edu/~alawrie Scattering for wave maps exterior to a ball

http://www.math.uchicago.edu/~alawrie


Concentration Compactness (continued)

The minimality of E∗ allows one to conclude that for our
sequence {~un} there can be only one non-vanishing profile v j ,
say, v1.

Indeed, the general idea is that if there were two nonzero
profiles v1 and v2, one can conclude via the orthogonality of
the energies that the corresponding non-linear profiles U1 and
U2 each have energy less than E∗ which means that U1 and
U2 both scatter as t → ∞ with uniformly controlled S norms.

A perturbation lemma now allows one to conclude the same
for the un which is a contradiction.

This allows us to obtain the limiting “critical element”, u∗,
with ‖~u∗‖H = E∗ and ‖u∗‖S = ∞.

The pre-compactness of the trajectory K+ = {u∗(t) | t ≥ 0} is
then obtained via another application of Bahouri-Gerard.
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Rigidity argument

Rigidity: The concentration compactness procedure produces a
nonzero solution ψ with a compact trajectory, K+ = {~ψ(t) | t ≥ 0},
in the event that Theorem 1 fails. The goal now is to show that
any such solution is identically zero, which is a contradiction.

One should note that in contrast to the 2d scattering result of
Cote, Kenig, Merle we do not need an upper bound on the
energy to carry out a rigidity argument.
Indeed, we show that the nonlinear functional L associated to
the virial identity is globally coercive in H.
This will involve a detailed analysis of the phase-portrait for
the Euler-Lagrange equations associated to the virial
functional.
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Virial Inequality

The key ingredient in the “rigidity argument” is the following
virial inequality. In what follows χR(r) = χ( r

R
) is a smooth cut-off

function that is 1 on [1,R ] and zero for r ≥ 2R . If ~ψ ∈ H is a
solution to (1), then for all T ∈ R

〈

χR ψ̇ | rψr + (29/20)ψ
〉

∣

∣

∣

T

0
≤

∫ T

0
L(ψ) + O

(

E∞
R (~ψ)

)

dt (8)

Where L : H → R is defined by

L(ψ) := −

∫ ∞

1

(

1

20
ψ̇2 +

19

20
ψ2

r

)

r2 dr

+

∫ ∞

1

(

sin2(ψ) −
29

20
ψ sin(2ψ)

)

dr
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Virial Lemma

When combined with the virial inequality, the following lemma is
enough to prove that the only compact trajectory is ψ ≡ 0.

Lemma 1

Let L : H → R be defined as in the previous slide. Then for every
~ψ = (ψ(t), ψ̇(t)) ∈ H we have

L(~ψ) ≤ −
1

20

∫ ∞

1

(

ψ̇2 + ψ2
r

)

r2 dr ≤ −
1

180
E(~ψ)

Lemma 1 means that the nonlinear virial functional L is
globally coercive on the energy space.
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Proof of Theorem 1

Indeed, applying Lemma 1 to the critical element ~ψ and plugging
this into (8) gives

〈

χR ψ̇ | rψr + 29/20ψ
〉

∣

∣

∣

T

0
≤ −

∫ T

0

E(~ψ)

180
+ O

(

E∞
R (~ψ)

)

dt (9)

By the pre-compactness K+ we can choose R large enough so
that E∞

R (~ψ) is small uniformly in t ≥ 0. Hence the

right-hand-side of (9) is ≤ −cTE(~ψ).
The left-hand-side of (9) is O(RE(~ψ)). Hence, for every T we
have

TE(~ψ) ≤ CRE(~ψ)

which is a contradiction since ψ is global. This proves
Theorem 1. It remains to establish Lemma 1.
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Proof of Lemma 1
Proof of Lemma 1: Observe that

L(~ψ) = −
1

20

∫ ∞

1

(

ψ̇2 + ψ2
r

)

r2 dr + Λ(ψ)

where

Λ(ψ) := −
9

10

∫ ∞

1
ψ2

r r2 dr +

∫ ∞

1

(

sin2(ψ) −
29

20
ψ sin(2ψ)

)

dr

= −
5

9
E (ψ) + N(ψ)

It suffices to show that

Λ(ψ) ≤ 0 for every ψ ∈ Ḣ1
0 (1,∞) (10)

We prove (10) first on the subspace AR := Ḣ1
0 (1,R) for every

R and then extend to all of Ḣ1
0 (1,∞) by an approximation

argument.
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Euler-Lagrange equation
Again, we want to prove that

Λ(ψ) ≤ 0 for every ψ ∈ AR (11)

We claim that ψ ≡ 0 is the unique maximizer for Λ|AR
for every R .

After establishing the existence, we obtain the Euler-Lagrange
equation for a maximizer.

ψrr +
2

r
ψr =

1

r2
f (ψ) (12)

ψ(1) = 0, ψ(R) = 0

where f (x) := 1
4 sin(2x) + 29

18x cos(2x).
Setting t = log(r) and defining x(t) := ψ(r) we obtain the
following autonomous differential equation for x :

ẍ + ẋ = f (x) (13)

x(0) = 0, x(log(R)) = 0
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Euler-Lagrange equation

The proof now follows from the following lemma:

Lemma 2

Let f (x) := 1
4 sin(2x) + 29

18x cos(2x). Suppose that x(t) is a

solution to

ẍ + ẋ = f (x) (14)

and suppose that x(0) = 0 and that there exists a T > 0 such that

x(T ) = 0. Then x ≡ 0.

We remark that the conclusion of Lemma 2 is extremely
sensitive to the the exact form of f . Lemma 2 is false if f is
replaced by 3

2 f .
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Analysis of the Phase Portrait

Lemma 2 will be established via a detailed analysis of the phase
portrait of (14). To begin, we set y = ẋ and rewrite (14) as the
following autonomous system:

v̇ :=

(

ẋ

ẏ

)

=

(

y

−y + f (x)

)

=: N(v) (15)

Let xj be the zeros of f . Note f , −xj = x−j . vj := (xj , 0) are
then fixed points of (15).
Each vj is a hyperbolic fixed point and one can show that

1 vj is a sink if j is odd
2 vj is a saddle if j is even
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Phase Plane 1

Figure: A depiction of the phase portrait associated to (15). The red and
green flow lines correspond to the saddles at the fixed points vj for j even
and the blue flow lines represent the sinks at the vj for j odd.
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Phase Plane 2

Figure: If Lemma 2 is false, then there would be a trajectory as depicted
by the purple line in the above schematic with v(0) = (0, v0) and
v(T ) = (0, v1). Our goal is to rule out such a trajectory.
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Phase Plane 3

Figure: The figure above represents a slice of the phase portrait
associated to (15). The red flow lines represent the unstable manifolds,
W u

j , associated to the vj , and the green flow lines represent the stable
manifolds, W s

j , associated to the vj .
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Main tool

Proving that the form of the red trajectories corresponding to
the unstable manifolds as depicted in the previous slide is a
delicate matter. For this we will need to construct suitable
Lyapunov functionals. We will also need the following:

Key identity:

1

2
(y2(t1) − y2(t0)) +

∫ t1

t0

y2(s) ds = F (x(t1)) − F (x(t0)) (*)

where F (x) := 5
18 cos(2x) + 29

36x sin(2x) is a primitive for f . This is
obtained by multiplying the equation (14) by ẋ and integrating
from t0 to t1.

The form of the green trajectories corresponding to the stable
manifolds is clear once we have established that the red
trajectories have the desired form.
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Lyapunov Functional

Figure: The red trajectory corresponds to the unstable manifold at v2.
The green region Σ is Lyapunov in the sense that ∂Σ is repulsive with
respect to the forward flow of our vector field (15)

.
A. L., W. Schlag., http://www.math.uchicago.edu/~alawrie Scattering for wave maps exterior to a ball

http://www.math.uchicago.edu/~alawrie


Lyapunov Functional

For the sake of finding a contradiction assume that the red
trajectory does not fall into the sink at v1. Then there exists a
time T such that v−

2 (T ) = (0, y2(T )). Using the identity (*)
with t0 = −∞, t1 = T we have

1

2
y2
2 (T ) +

∫ T

−∞

y2
2 (s) ds = F (0) − F (x2) < 2.18 (16)

Now we use the fact that since ∂Σ is Lyapunov the trajectory
v−
2 cannot enter Σ and hence the integral on the

left-hand-side of (16) is greater than the area of Σ, i.e.,

2.21 < Area(Σ) <

∫ T

−∞

y2
2 (s) ds (17)

2.18 < 2.21 but only by .03!
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Lyapunov Functional 1

Figure: The region Σ = Σ1 ∪ Σ2 ∪ Σ3 pictured above has the property
that ∂Σ is repulsive with respect to the unstable manifold W u

−2.
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Construction of ∂Σ

To construct Σ, we define three polynomials, p1, p2, p3. As an
example the first polynomial p1 as a function of x is defined by:

p1(x) := −
3

1000
+

110

47

(

x +
43

18

)

−
89

222

(

x +
43

18

)2

−
23

42

(

x +
43

18

)3

+
7

85

(

x +
43

18

)4

+
8

303

(

x +
43

18

)5

−
1

446

(

x +
43

18

)6

−
1

760

(

x +
43

18

)7

+
1

4035

(

x +
43

18

)8

−
1

13999

(

x +
43

18

)9

We set Σ = Σ1 ∪ Σ2 ∪ Σ3. Σ1 is defined by

Σ1 :=

{

(x , y) ∈ Ω−1 | −
43

18
+

3

1000
< x < −

3

5
, 0 < y < p1

(

−
3

5

)}
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Numerical simulation of flow in first strip

Figure: A schematic depiction of the flow in the first strip using Maple.
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Numerical simulation of flow in second strip

Figure: A schematic depiction of the flow in the second strip using
Maple.
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Renormalization

To deal with the trajectories emanating from the vj for even j > 4
we shift and rescale our equation (15) via the following
renormalization. For each j ∈ N, ε ∈ R we define ζ and η via

x(t) =:
2j − 1

4
π + ζ(ε−1t) (18)

y(t) =: ε−1 η(ε−1t)

Define zj := 2j−1
4 π. Then (15) implies the following system of

equations for ζ, η

(

ζ̇
η̇

)

=

(

η
−εη + ε2f (zj + ζ)

)

(19)

where ˙ = d
ds

where s = ε−1t.
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Renormalization 2
Set g(ζ) := 1

4 cos(2ζ) − 29
18ζ sin(2ζ). And for even j > 4 set

ε :=

√

72

29π(2j − 1)

Observe ε < 7
20 for j ≥ 6. Then(19) becomes

(

ζ̇
η̇

)

=

(

η
sin(2ζ) − εη − ε2g(ζ)

)

(20)

Note that (20) is the equation governing the motion of a
damped pendulum with a small perturbative term ε2g(ζ), and
in the limit as ε→ 0, (20) is exactly the the equation of a
simple pendulum.
After this renormalization, the proof follows the same general
outline–phase plane analysis, construction of a Lyapunov
functional–as for the first two strips.
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Renormalized Phase Plane
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Figure: A schematic depiction of the flow for the renormalized equation.
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Reminder of Main Results

Theorem 1 (Lawrie, S., 2011)

n = 0, Q0 = 0. For any smooth energy data (ψ0, ψ1) ∈ H, there

exists a global smooth evolution ~ψ to (1). Furthermore, ~ψ scatters

to 0 in the sense that the energy of ~ψ on any arbitrary, but

compact region vanishes as t → ∞.

Theorem 2 (Lawrie, S., 2011)

n ≥ 1, Qn = Q. There exists ε > 0 such that for all smooth data

(ψ0, ψ1) ∈ Hn such that

‖(ψ0, ψ1) − (Q, 0)‖H < ε

the unique solution ψ to (1) with data (ψ0, ψ1) exists globally in

time and scatters to Q as t → ∞.
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Remarks regarding Theorem 2

Theorem 2 is proved by establishing Strichartz estimates for
the wave equation exterior to a ball perturbed by a radial
potential V which arises from the linearization of the problem
about the harmonic map Qn. To be precise we prove
Strichartz estimates for

(∂tt − ∆5 + V )u = F

u(t, 1) = 0, (u(0), ut(0)) = (u0, u1) ∈ Ḣ1
0 × L2(R5

∗, radial)

V (r) =
2

r2
(cos(2Q(r)) − 1)

One can show that Qn(r) = nπ − O(r−2) as r → ∞ so V

decays like r−6 as r → ∞.
The idea is to extend the exterior Strichartz estimates of
Metcalfe, Smith, and Sogge to this setting via local energy
estimates. It is crucial that the operator −∆ + V has no
negative spectrum, and no eigenvalue or resonance at 0.
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Higher Topological classes, non-perturbative regime

Conjecture of Bizon, Chmaj, Maliborksi: Numerical
simulations suggest that Theorem 2 holds with ε = ∞.
This currently appears out of reach. The main difficulty with
the implementation of the Kenig-Merle method lies with the
coercivity of the virial functional centered at the harmonic
maps Qn.
Euler-Lagrange equations involve Qn, hence cannot be
transformed into an autonomous system
Qn is not explicit.
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The End

Thank you!
p.s. the slides from this talk can be found on my webpage:
math.uchicago.edu/∼alawrie
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