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A brief introduction to wave maps:

@ Definition: Formally, wave maps are critical points of the
Lagrangian

L(u,du) = / 0 (B, Dgu) . dt dx
R1+d g

where u : (R4 n) — (M, g). Here, i is the Minkowski
metric on R'*9 and (M, g) is a Riemannian manifold.

@ Intrinsic Formulation: Critical points of £ satisfy the
Euler-Lagrange equation

no‘ﬁDoﬁgu =0

@ Extrinsic Formulation: If M — RN is embedded, critical
points are characterized by

Qul T,M
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The Cauchy problem

Cauchy problem:

@ Intrinsic Formulation: In local coordinates on (M, g), the
Cauchy problem for wave maps is

Ouk = _naﬁr,.kj(u)aau’a@uf
(u, 0ru)|t=0 = (uo, ur)

where FZ- are the Christoffel symbols on TM.

@ Extrinsic Formulation: In the embedded case, the Cauchy
problem becomes

Ou = n*?S(u)(dau, 5u)

(u, 0ru)|¢=0 = (uo, u1)

where S is the second fundamental form of the embedding.
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Energy conservation and scaling

@ Conservation of energy: Wave maps exhibit a conserved
energy

E(u, dpu)(t) = /Rd(\atu@ + [Vul2) dx = const.

@ Scaling invariance: Wave maps are invariant under the scaling
u(t, x) — u(At, Ax).

o Criticality: The scaling invariance implies that the Cauchy
problem is H® x H*~! critical for s = g, energy critical when

d = 2 and energy supercritical for d > 2.

A. L., W. Schlag., http://www.math.uchicago.edu/~alavrie Scattering for wave maps exterior to a ball


http://www.math.uchicago.edu/~alawrie

Equivariant Wave Maps

Equivariant wave maps: In the presence of symmetries, e.g.,
M = S9, one can require

uop=plou

where p € SO(d) acts on RY (resp. S9) by rotation. The action
on 5% is rotation is about a fixed axis.
Foundational works:
@ Shatah (1988): finite time blow-up (self-similar) for wave
maps u: R4 — S9 for d > 3.
@ Christodoulou, Tahvildar-Zadeh (1993): Global theory for
targets satisfying a convexity condition.
@ Shatah, Tahvildar-Zadeh (1994): Local theory, generalization
of Shatah blow-up to rotationally symmetric, non-convex
targets.
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Exterior Wave Maps

Issue at hand: Global well-posedness and scattering for 3d
equivariant wave maps exterior to a ball.
Exterior model: We consider

u:R, x (R®\B) - S*

with the Dirichlet boundary condition u(0B) = north pole, and
B = B(0,1). Fixing equivariance class £ = 1 we can write

u:(t,r,w)— (U(t,r),w) — (sin(v(t, r)) - w, cos(¥(t, r)))

where (r,w) are polar coordinates on R® and 1) measures the
azimuth angle from the north pole on S3.
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1-equivariant exterior Cauchy problem

Cauchy problem in the exterior setting:
2 in(2
wtt - wrr - F¢r + Sln52w)
P(t,1)=0 Vt>0
$(0) := (¥, 9e)]e=0 = (0, 91)

Conserved energy:

E() /j(wtw?) S'“W P dr

=0 (1)
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1-equivariant exterior Cauchy problem

Cauchy problem in the exterior setting:
2 sin(2
Yt — Y — F¢r + E;ﬁ) =0 (1)
P(t,1)=0 Vt>0
B(0) := (¥, ve)|e=0 = (0, ¥1)
Conserved energy:

aﬁzﬁm[( e+ 0] g

@ Finite energy + continuous dependence on a time interval /
= 1)(t,00) = n7 for some n € N, for every t € I.
—> every wave map has a fixed topological degree.

@ The natural space for the solution in the energy class defined
by n=0is H = H x [?(1,00) with the norm

|M@=A(ﬁ+%w%r
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Harmonic Maps

Why is the exterior 3d problem interesting? Removing a ball gives
rise to a family of nontrivial harmonic maps @, indexed by the
topological degree n.
Harmonic maps: A “degree n" harmonic map in this context is a
solution to the following problem:

er + %Qr = SmE’gQ) (2)

Q(1)=0, Q(ox)=nm

@ n = 0: In the zero topological class we have @ = 0.
@ n > 1: After the change of variables t = log(r), x(t) := Q(r),
set y = x and (2) becomes the autonomous system

<;> N <—y +}s/in(2x)> (3)

x(0) =0, x(c0)=nm
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Figure: The red flow line is a depiction of the harmonic map @1 which

O0and Q(x) =7

Q1) =

1

connects the north pole to the south pole, i.e.

@ This is the equation of a damped pendulum.

@ 3d non-exterior problem there are no harmonic maps...
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2d Harmonic Maps?

2d Harmonic maps equation: In 2d, the exterior harmonic map
equation reduces to the equation of a simple pendulum

N
=3 sin(2x), x(0) =0, x(o0)=nm
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Figure: The red flow line is a depiction of the harmonic map Q for the
non-exterior problem which connects the north pole to the south pole.
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Harmonic Maps Summary

2d 3d
full Unique harmonic map Q No nontrivial
problem with Q(0) =0 harmonic maps
(up to scaling)
exterior No nontrivial Family @, of
problem harmonic maps harmonic maps indexed by
topological degree
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3d exterior model

Back to the 3d exterior model:

Soliton Resolution Conjecture: Informally, this conjecture asserts

that given “generic” initial data for a dispersive equation with

global solutions, the long term behavior of the global evolution

should eventually resolve into a superposition of and a
component that decays.

@ The 3d exterior wave map problem was proposed by Bizon,
Chmaj, Maliborksi (2011), as a simple model to study
relaxation to the ground states (given by the harmonic maps).

@ Removing a ball breaks the scaling symmetry!

@ B-C-M make the simple observation that removing the origin
effectively renders the 3d Cauchy problem subcritical. (3d
equiv. wave maps to the sphere are supercritical in
non-exterior case). Global existence becomes a triviality.

@ Numerical simulations suggest that in each energy class
defined by the topological class, ¥(c0) = nm, every solution
scatters to the unique harmonic map Q, in that class.

A. L., W. Schlag., http://www.math.uchicago.edu/~alavrie Scattering for wave maps exterior to a ball


http://www.math.uchicago.edu/~alawrie

Main Results

Theorem 1 (L, Schlag, 2011)

n=20, Q = 0. For any smooth energy data (1o,v1) € H, there
exists a global smooth evolution ) to (1). Furthermore, Y scatters
to 0 in the sense that the energy of @5 on any arbitrary, but
compact region vanishes as t — o0.

Theorem 2 (L, Schlag, 2011)

n>1, Q,= Q. There exists € > 0 such that for all smooth data
(Yo, 1) € Hy such that

(Y0, ¢1) — (Q,0)||[n < €

the unique solution ) to (1) with data (o, 1)1) exists globally in
time and scatters to Q as t — oo.
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Scattering

Scattering: Here scattering can be phrased as follows: There exists
(i, p¢) such that

(V,9) = (Qn,0) + (¢, ot) + on(l) as t— o0

where  solves the linearized equation

1 2
Ot —rr — —pr+ 59 =0
r r

o(t,1) =0

@ Cote, Kenig, Merle (2008) prove scattering for 2d wave maps
(non-exterior) for data with energy slightly above £(Q,0) via
the celebrated Kenig-Merle
concentration-compactness/rigidity method, Kenig, Merle
(2006 Invent.), (2008 Acta.). We also employ the
Kenig-Merle method here.
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Kenig-Merle method

Kenig-Merle method: We outline the proof of Theorem 1. Let
Sy = {(vo, 1) € H|¥(t)exists globally and scatters as t — +00}

We claim that S; = H. This is proved via the following outline:
@ (Small data result): Small data global existence and
scattering, proving S5 is not empty.

@ (Concentration Compactness): If Theorem 1 fails, i.e., if
S+ # H, then there exists a nonzero energy solution 1 to (1)
(called the critical element) such that the trajectory

Ky ={d(t)|t >0}

is precompact in ‘H.
o (Rigidity Argument): If a global evolution 1/7 has the property
that the trajectory, K, is pre-compact in ‘H, then ¢ = 0.
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Small Data Scattering

Small data scattering: The small data global existence and
scattering result follows from the Smith-Sogge Strichartz estimates
for 5d linear exterior wave equations (2000 CPDE) after the
following reduction: Set u := % Then u satisfies the following
equation:

2 sin(2ru) — 2ru
Uit — Uy — 7Ur + ( ’33 = (4)

u(l,t)=0

@ By Hardy's inequality the map ¢ — % defines an isomorphism
between H and H} x L2(R®\ B), hence a small data global
existence and scattering result for (4) implies the same result
for (1) in H.

@ As usual, one can show that a solution u scatters to a free
wave <= ||u|ls < co where S is a suitably chosen Strichartz
norm. In this case, S = L318.
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Concentration Compactness

Concentration Compactness:

@ small data theory = & contains a small ball around zero.
Hence, if Theorem 1 fails, there is a bounded sequence of
data i, := (u9, u}l) € H such that

|Gnlly — E. >0, and |jus)s — oo

One assumes that E, is minimal with this property.

@ Naively, we would like to “pass to the limit” in the u, and
obtain an element u, with ||i,|/» = E, and [|u.||s = oo.

@ However, the symmetries of the equation present an obstacle
to compactness. Namely,

© the u, can be arbitrarily in time.
@ the u, might split into which become
arbitrarily separated in space-time as n — oo.
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Concentration Compactness (continued)

Bahouri-Gerard Decomposition

{u,} a seq. of free radial waves bounded in H = H} x [2(R3).
Passing to a subsequence, 3 a seq. of free solutions v/ bounded in
‘H, and seq.’s of times t" € R such that for v defined by

un(t) = D Vi(t+ 1)) +E(t) (5)

1<j<k

we have for any j < k, ’7,’5(—1‘,’,) — 0 weakly in H as n — oo,
limp_oo |th — tX| = 0o and the errors v% vanish asymptotically

10
a a k
Jim lim sup [, [l 2nizis)mxrg) =0 ¥V 5= <p<oo (6)

Moreover, we have orthogonality of the free energy

1allF = Z 17113, + 175113, + o(1)  asn — oo (1)
1<j<k
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Concentration Compactness (continued)

Figure: a schematic description of the concentration-compactness
decomposition
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Concentration Compactness (continued)

@ The minimality of E, allows one to conclude that for our
sequence {ii,} there can be only one non-vanishing profile v/,
say, vi.

@ Indeed, the general idea is that if there were two nonzero
profiles v! and v2, one can conclude via the orthogonality of
the energies that the corresponding non-linear profiles U* and
U? each have energy less than E, which means that U! and
U? both scatter as t — oo with uniformly controlled S norms.

@ A perturbation lemma now allows one to conclude the same
for the u, which is a contradiction.

@ This allows us to obtain the limiting “critical element”, u,
with ||y||% = E« and [Juy||s = .

@ The pre-compactness of the trajectory Ky = {u.(t)|t > 0} is
then obtained via another application of Bahouri-Gerard.
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Rigidity argument

Rigidity: The concentration compactness procedure produces a
nonzero solution ) with a compact trajectory, K. = {4(t)|t > 0},
in the event that Theorem 1 fails. The goal now is to show that
any such solution is identically zero, which is a contradiction.

@ One should note that in contrast to the 2d scattering result of
Cote, Kenig, Merle we do not need an upper bound on the
energy to carry out a rigidity argument.

@ Indeed, we show that the nonlinear functional £ associated to
the virial identity is globally coercive in H.

@ This will involve a detailed analysis of the phase-portrait for
the Euler-Lagrange equations associated to the virial
functional.
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Virial Inequality

The key ingredient in the “rigidity argument” is the following

virial inequality. In what follows xr(r) = x(%) is a smooth cut-off

function that is 1 on [1, R] and zero for r > 2R. If ¢y € H is a
solution to (1), then for all T € R

. T T -
(xrir | riy +(29/20)0 )| < /0 L)+ 0 (E5()) ot (8)
Where L : H — R is defined by
[T 19 5\ o
L(y) = /1 (201/1 + 201/},) redr

<[ <sin2(¢) - ﬁ—ﬁmin(zw)) dr
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Virial Lemma

When combined with the virial inequality, the following lemma is
enough to prove that the only compact trajectory is ¢ = 0.

Lemma 1

Let L:'H — R be defined as in the previous slide. Then for every
= (¢(t),9¥(t)) € H we have

" 1 2 2
o) < —55 [ (4 9) P dr <~ 6D

@ Lemma 1 means that the nonlinear virial functional L is
globally coercive on the energy space.
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Proof of Theorem 1

Indeed, applying Lemma 1 to the critical element J and plugging
this into (8) gives

(i o 20/200) [T <= [T 4 0 (e) o 0)

0

@ By the pre-compactness K we can choose R large enough so
that 5,%0(1;) is small uniformly in t > 0. Hence the
right-hand-side of (9) is < —cTE(1).

o The left-hand-side of (9) is O(RE(1))). Hence, for every T we
have

TE(D) < CRE(Y)

which is a contradiction since 1) is global. This proves
Theorem 1. It remains to establish Lemma 1.
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Proof of Lemma 1

Proof of Lemma 1: Observe that

L) =5 [ (324 02) e+ A)
where
/ Y2 r dr+/ <sin2(¢)—%¢sin(2¢)> dr
= §E(¢) + N(¥)

@ |t suffices to show that
A() <0 for every 1 € H3(1,00) (10)

@ We prove (10) first on the subspace Ag := H(1, R) for every
R and then extend to all of Ho(l o0) by an approximation
argument.

A. L., W. Schlag., http://www.math.uchicago.edu/~alavrie Scattering for wave maps exterior to a ball


http://www.math.uchicago.edu/~alawrie

Euler-Lagrange equation

Again, we want to prove that
Ap) <0 for every o € Ag (11)
We claim that ¢ = 0 is the unique maximizer for A| 4, for every R.

@ After establishing the existence, we obtain the Euler-Lagrange
equation for a maximizer.

( ) =0, %(R) =

where f(x) := I sin(2x) 4+ 22 x cos(2x).
@ Setting t = log(r) and defining x(t) := 1(r) we obtain the
following autonomous differential equation for x:

%+ x = f(x) (13)
x(0) =0, x(log(R)) =0
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Euler-Lagrange equation

The proof now follows from the following lemma:

Lemma 2
Let f(x) := 7sin(2x) + 2 x cos(2x). Suppose that x(t) is a
solution to

%+ % = f(x) (14)

and suppose that x(0) = 0 and that there exists a T > 0 such that
x(T)=0. Then x =0.

@ We remark that the conclusion of Lemma 2 is extremely
sensitive to the the exact form of f. Lemma 2 is false if f is
replaced by %f.
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Analysis of the Phase Portrait

Lemma 2 will be established via a detailed analysis of the phase
portrait of (14). To begin, we set y = X and rewrite (14) as the
following autonomous system:

()Gt s

@ Let x; be the zeros of f. Note f, —x; = x_j. v; := (x;,0) are
then fixed points of (15).
@ Each v; is a hyperbolic fixed point and one can show that
Q vj is a sink if j is odd
© vj is a saddle if j is even
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Phase Plane 1

KO XO© X6

Figure: A depiction of the phase portrait associated to (15). The red and
green flow lines correspond to the saddles at the fixed points v; for j even
and the blue flow lines represent the sinks at the v; for j odd.
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Phase Plane 2

%

Figure: If Lemma 2 is false, then there would be a trajectory as depicted
by the purple line in the above schematic with v(0) = (0, v) and
v(T) = (0,v1). Our goal is to rule out such a trajectory.
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Phase Plane 3

Figure: The figure above represents a slice of the phase portrait
associated to (15). The red flow lines represent the unstable manifolds,
W, associated to the v;, and the green flow lines represent the stable
manifolds, W7, associated to the v;.
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@ Proving that the form of the red trajectories corresponding to
the unstable manifolds as depicted in the previous slide is a
delicate matter. For this we will need to construct suitable
Lyapunov functionals. We will also need the following:

Key identity:

51

S07(0) = () + [y ds = Flx(t)) ~ Flx(t) (%)

to

where F(x) := 73 cos(2x) + %—gx sin(2x) is a primitive for f. This is
obtained by multiplying the equation (14) by x and integrating
from ty to t1.
@ The form of the green trajectories corresponding to the stable
manifolds is clear once we have established that the red

trajectories have the desired form.
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Lyapunov Functional

Figure: The red trajectory corresponds to the unstable manifold at v».
The green region ¥ is Lyapunov in the sense that 0X is repulsive with
respect to the forward flow of our vector field (15)
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Lyapunov Functional

@ For the sake of finding a contradiction assume that the red
trajectory does not fall into the sink at v;. Then there exists a
time T such that v, (T) = (0,2(T)). Using the identity (*)
with tg = —oo, t1 = T we have

1 T
§y22(T) —I—/ y3(s)ds = F(0) — F(xp) < 2.18 (16)
— 0o
@ Now we use the fact that since 0% is Lyapunov the trajectory
v, cannot enter > and hence the integral on the
left-hand-side of (16) is greater than the area of ¥, i.e.,

i
221 < Area(T) < / V2(s) ds (17)

— o0

@ 2.18 < 2.21 but only by .03!
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Lyapunov Functional 1

Figure: The region ¥ = ¥; U X, U X3 pictured above has the property
that OX is repulsive with respect to the unstable manifold W*,.
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Construction of 0%

To construct ¥, we define three polynomials, p1, p2, p3. As an
example the first polynomial p; as a function of x is defined by:

3 110 43 89 43\? 23 43\ 3

pl(x)::—m+—<x+1—8>—@<x+ﬁ> _E<X+E>
7 43 8 43\° 1 43\°
+%<X+18> +ﬁ< +E> —m<x+ﬁ>

B GV 2 W N AU A S S (W A
760 18 4035 18 13999 18
We set ¥ =%, U2, UX3. X3 is defined by

43 3 3 3
Y= {(X,y)EQ_1| _18+1000 < x <—g,0<y<p1 <_§>}
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Numerical simulation of flow in first strip
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Figure: A schematic depiction of the flow in the first strip using Maple.
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Numerical simulation of flow in second strip
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Figure: A schematic depiction of the flow in the second strip using
Maple.
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Renormalization

To deal with the trajectories emanating from the v; for even j > 4
we shift and rescale our equation (15) via the following
renormalization. For each j € N, € € R we define ¢ and 7 via

_]—1

x(t) T+ ((e7 ) (18)
y(t) fn(eMt)

Define z; := 214 m. Then (15) implies the following system of

equations for {,n
¢\ _ 7
(5) = (Cors s +0) -

where " = % where s = e~ 1¢.
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Renormalization 2
Set g(¢) := 7 cos(2¢) — 3¢ sin(2¢). And for even j > 4 set
72
£ =y
297(2j — 1)

Observe & < o for j > 6. Then(19) becomes

()= (oag-tmc0) @

@ Note that (20) is the equation governing the motion of a
damped pendulum with a small perturbative term £2g(¢), and
in the limit as € — 0, (20) is exactly the the equation of a
simple pendulum.

@ After this renormalization, the proof follows the same general
outline—phase plane analysis, construction of a Lyapunov
functional—as for the first two strips.
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Renormalized Phase Plane
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Figure: A schematic depiction of the flow for the renormalized equation.
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Reminder of Main Results

Theorem 1 (Lawrie, S., 2011)

n=20, Q = 0. For any smooth energy data (1o,v1) € H, there
exists a global smooth evolution ) to (1). Furthermore, Y scatters
to 0 in the sense that the energy of @5 on any arbitrary, but
compact region vanishes as t — o0.

Theorem 2 (Lawrie, S., 2011)

n>1, Q,= Q. There exists € > 0 such that for all smooth data
(Yo, 1) € Hy such that

(Y0, ¢1) — (Q,0)||[n < €

the unique solution ) to (1) with data (o, 1)1) exists globally in
time and scatters to Q as t — oo.
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Remarks regarding Theorem 2

@ Theorem 2 is proved by establishing Strichartz estimates for
the wave equation exterior to a ball perturbed by a radial
potential V' which arises from the linearization of the problem
about the harmonic map Q,. To be precise we prove
Strichartz estimates for

(8”- — A + V)u =F
u(t,1) = 0 (u(0), u(0)) = (up, u1) € HE x L?(RS, radial)

V(r) = (COS(2Q( )—1)

One can show that @Q,(r) = nm — O(r=2) as r — oo so V
decays like r=° as r — oo,

@ The idea is to extend the exterior Strichartz estimates of
Metcalfe, Smith, and Sogge to this setting via local energy
estimates. It is crucial that the operator —A + V has no
negative spectrum, and no eigenvalue or resonance at 0.
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Higher Topological classes, non-perturbative regime

@ Conjecture of Bizon, Chmaj, Maliborksi: Numerical
simulations suggest that Theorem 2 holds with £ = oc.

@ This currently appears out of reach. The main difficulty with
the implementation of the Kenig-Merle method lies with the
coercivity of the virial functional centered at the harmonic
maps Q,.

@ Euler-Lagrange equations involve @, hence cannot be
transformed into an autonomous system

@ @, is not explicit.

A. L., W. Schlag., http://www.math.uchicago.edu/~alavrie Scattering for wave maps exterior to a ball


http://www.math.uchicago.edu/~alawrie

The End

Thank you!
p.s. the slides from this talk can be found on my webpage:
math.uchicago.edu/~alawrie
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